Меню
наша группа ВКонтакте. Получи бесплатно решение задачи по теории вероятностей


  Искать только в данном разделе

< Предыдущая 1 ... 40 41 42 43 44 ... 60 Следующая > 


Полная вероятность и формула Байеса

Решения задач с 24089 по 24139

Задача 24089. Строительная бригада получает железобетонные перекрытия от трех домостроительных комбинатов (ДСК): от I ДСК - 28%, от II ДСК- 52% и от III ДСК - 20% перекрытий. Известно, что брак продукции ДСК 1 составляет 9%, II ДСК - 6%, a III ДСК - 7%. Полученные перекрытия хранятся на общем складе. Наугад для контроля проверенное перекрытие оказалось браком. Какова вероятность того, чтоб бракованное перекрытие изготовлено на I ДСК? 

30 ₽

Задача 24090. Имеются 3 колоды по 36 карт в каждой, причем в двух – стандартный набор карт, а в третьей – 6 тузов. Наудачу выбирают 2 колоды, а затем из каждой извлекают по одной карте.
а) Найдите вероятность того, что извлеченные карты – тузы.
б) Извлеченные карты оказались тузами. Найдите вероятность того, что одна из выбранных колод содержала 6 тузов.

30 ₽

Задача 24091. В продажу поступает однотипная продукция с трех заводов. Брак соответственно составляет 3%, 1%, 8%. Первый завод поставляет 40% продукции, второй – 25%, третий – 35%. Наудачу извлекают одно изделие.
1) Какова вероятность приобрести бракованное изделие.
2) Каким заводом вероятнее всего произведено приобретенное доброкачественное изделие.

30 ₽

Задача 24092. Есть правильный игральный кубик и урна с 4 белыми и 3 чёрными шарами. Кубик подбрасывают четырежды. Затем из урны берут столько шаров, сколько выпало шестёрок. Известно, что среди вынутых шаров оказался ровно один белый шар. С какой вероятностью выпало ровно три шестёрки?

30 ₽

Задача 24093. На двух станках изготавливают одинаковые детали. Вероятность того, что изготовленная деталь стандартная, для первого станка равна 0,8; для второго - 0,9. Производительность второго станка вдвое больше производительности первого. Найти вероятность того, что взятая наудачу деталь окажется стандартной?

30 ₽

Задача 24094. 70% деталей, поступающих на склад, изготовлено заводом №1 и 30% – заводом №2. На заводе №1 производится 50% продукции высшего качества, а на заводе №2 – 60%. Какова вероятность того, что полученная на складе деталь высшего качества.

30 ₽

Задача 24095. В продажу поступает однотипная продукция с трех заводов. Брак соответственно составляет 2, 5, 10 %. Первый завод поставляет 40% продукции, второй – 25%, третий – 35%. Наудачу извлекают одно изделие.
1) Какова вероятность приобрести бракованное изделие.
2) Каким заводом вероятнее всего произведено приобретенное доброкачественное изделие.

30 ₽

Задача 24096. Конкурентоспособность выпускника КубГУ на рынке труда среди менеджеров равна 0,85; КубГТУ – 0,6; КубГАУ – 0,65. Для собеседования в организацию с целью заполнения одной вакансии было приглашено некоторое количество выпускников этих вузов, причем 25% из них составляли выпускники КубГУ, 15% - выпускники КубГАУ, а остальные - выпускники КубГТУ. В результате собеседования был приглашен один из соискателей. Какова вероятность того, что им оказался выпускник КубГУ?

30 ₽

Задача 24097. Из 18 стрелков 5 попадает в мишень с вероятностью 0,6: 7 - с вероятностью 0,7; 4 - с вероятностью 0,6 и 2 - с вероятностью 0,5. Наудачу выбранный стрелок не попал в мишень. К какой группе вероятнее всего принадлежит стрелок?

30 ₽

Задача 24098. На трех поточных линиях производятся одинаковые изделия, которые поступают в службу контроля качества. Производительность первой поточной линии вдвое больше производительности второй и вдвое меньше производительности третьей поточной линии; причем первая линия в среднем производит 50% изделий высшего сорта, вторая - 80%, третья - 30%. Наугад взятое на проверку изделие оказалось высшего сорта. Какова вероятность того, что это изделие произведено на второй поточной линии?

30 ₽

Задача 24099. Сборщик получил 4 коробки деталей, изготовленных первым заводом и 3 такие же коробки, изготовленных вторым заводом. Вероятность того, что деталь первого завода стандартна, равна 0,9, а второго - 0,75. Известно, что деталь, извлеченная сборщиком, оказалась стандартной. Какова вероятность, что эта деталь изготовлена на первом заводе.

30 ₽

Задача 24100. Три цеха производят одинаковые детали, которые поступают на общую сборку. Вероятность изготовления стандартной детали в первом цехе – 0,93, во втором – 0,88, в третьем – 0.85. Первый цех имеет три технологические линии, второй – две, третий – одну (линии одинаковой производительности). Найти вероятность того, что наудачу взятая деталь на сборке окажется нестандартной.

30 ₽

Задача 24101. В двух урнах находится по 5 шаров, из которых в 1-й урне белых шаров 4, а во 2-й - 3, остальные шары черные. С шансами 3:1 выбирается одна урна. Из выбранной урны достается шар. Какова вероятность того, что он будет белым?

30 ₽

Задача 24102. Для трех фирм шансы «попасть под проверку» равны 7:2:1. Вероятности пройти проверку благополучно равны 0,7, 0,5 и 0,4. Какова вероятность НЕ найти нарушение при однократной проверке? Проверка нарушение обнаружила. Какова вероятность, что это произошло во 2-й фирме?

30 ₽

Задача 24103. Два завода выпускают одинаковые изделия. Вероятность брака для 1-го завода равна 0,05, для 2-го – 0,10. Первый завод имеет два конвейера; второй - один конвейер. Детали с заводов поступают на склад. Найти вероятность того, что наудачу взятая на складе деталь будет годной.

30 ₽

Задача 24104. Для зачета по математике преподаватель подготовил задачи по геометрии и алгебре. Студент умеет решать 70% задач по алгебре и 50% задач по геометрии. Для сдачи зачета необходимо решить задачу из первого попавшегося билета. Билетов с задачами по геометрии в два раза больше, чем по алгебре.

1) Какова вероятность того, что студент сдаст зачет?
2) Известно, что студент сдал зачет. Какова вероятность того, что ему достался билет с задачей по геометрии?

30 ₽

Задача 24105. Контрольная работа состоит из двух тестовых вопросов. В каждом вопросе 5 вариантов ответа, из которых один - верный. Студент плохо готовился и поэтому знает только 10 вопросов (из 25). Он вынимает два вопроса случайно и без возвращения. Неправильный ответ на тесте не штрафуется, поэтому если студент не знает ответа, то он отвечает наугад равновероятно. Какова вероятность того, что студент знает ответ хотя бы на один вопрос, если он отметил верные ответы на оба из них? Запишите ответ в виде обыкновенной несократимой дроби.

30 ₽

Задача 24106. В первой бригаде производится в 12 раз больше продукции, чем во второй. Вероятность того, что производимая продукция окажется стандартной, для первой бригады равна 0,8, а для второй – 0,7.

Найти:
а) вероятность того, что наугад взятая продукция стандартная;
б) вероятность того, что наугад взятая продукция изготовлена второй бригадой, если продукция оказалась нестандартной.

30 ₽

Задача 24107. Из 12 лотерейных билетов 5 выигрышных. Билеты вытягиваются по одному без возвращения. Во второй раз был вытянут выигрышный билет. Какова вероятность того, что и в первый раз был вытянут выигрышный билет?

30 ₽

Задача 24108. Для сдачи зачёта студентам необходимо подготовить 30 вопросов. Из 25 студентов 4 подготовили ответы на все вопросы, 10 студентов - на 25 вопросов, 4 студента – на 20 вопросов и 7 студентов – на 15 вопросов. Вызванный наудачу студент ответил преподавателю на поставленный ему один вопрос. Определить вероятность того, что этот студент: а) подготовил все вопросы; б) подготовил половину вопросов.

30 ₽

Задача 24109. Вероятность того, что клиент банка не вернёт кредит в период экономического роста, равна 0,05; а в период экономического кризиса – 0,15. По мнению экспертов, вероятность того, что предстоящий год будет годом экономического роста, равна 0,8.
а) Найти вероятность того, что случайно выбранный клиент банка, получивший кредит в текущем году, не вернёт его в предстоящем году.
б) Клиент не вернул кредит. Найти вероятность того, что это произошло в период экономического кризиса.

30 ₽

Задача 24110. В киоске продаются 15 газет «Комок», 10 – «Спид-инфо» и 2 – «Вестник котлонадзора». Вероятность того, что данные периодические издания правильно отреагируют на главное событие, происходящее в Гондурасе, равна 0,8, 0,6 и 0,4 соответственно. Вы наугад покупаете газету. Какова вероятность того, что вы будете правильно проинформированы о гондурасском событии?

30 ₽

Задача 24111. Среднестатистический сотрудник заболевает гриппом с вероятностью 0,2, простудой — с вероятностью 0,3 и остается здоровым — с вероятностью 0,5. Вероятность,  что он уйдет на больничный при заболевании гриппом равна 0,8, при простуде —  0,4, и даже будучи здоровым сотрудники уходят на больничный с вероятностью 0,1.  Найдите вероятность того, что ушедший на больничный сотрудник был здоров. 

30 ₽

Задача 24112. В первом ящике находится 7 шаров. Среди них 3 белых, остальные – черные. Во втором ящике – 13 шаров, из которых – 8 белых, 5 - черных. Из первого ящика во второй наугад переложили 1 шар, а затем из второго наугад вынули 1 шар. Найти вероятность того, что этот шар будет белый.

30 ₽

Задача 24113. На некоторой фабрике 20% продукции производится первой машиной, 55% - второй, а остальная – третьей. Первая машина дает 3% брака, вторая – 5%, а третья – 8%. Случайно выбранная единица продукции оказалась стандартной. Определить вероятность того, что она изготовлена на первой машине.

30 ₽

Задача 24114. Из числа поступивших в ВУЗ, в среднем 75% жители населенного пункта, в котором располагается учебное заведение, 15% - ближайших сельских районов, 10%- других регионов. Вероятность успешного завершения составляет для этих категорий учащихся 0,75, 0,85, 0,6 соответственно.
а) какова вероятность того, что взятый наугад студент, поступивший в ВУЗ, закончит успешно? б) Некто успешно завершил обучение. Какова вероятность, что он житель другого региона?

30 ₽

Задача 24115. На ферме живут 5 породистых кроликов, у которых вероятность заразиться равна 2/17, а также 8 беспородных кроликов, у которых вероятность заразиться равна 3/23 и 7 гибридных кроликов, у которых вероятность заразиться равна 1/12. Тогда у выбранного наугад кролика вероятность заразиться равна.

30 ₽

Задача 24116. Имеется два ящика с деталями. В 1 ящике – 50 стандартных и 15 бракованных деталей, во 2 – 42 стандартных и 18 бракованных деталей. Из выбранного наугад ящика вынимают бракованную деталь. Определить вероятность того, что она взята из 1 ящика.

30 ₽

Задача 24117. Двигатель может работать в нормальном и форсированном режимах. За время работы двигателя нормальный режим наблюдается в 80% случаев, а форсированный – в 20%. Вероятность выхода из строя при нормальном режиме равна 0,01, а при форсированном – 0,03. Найти вероятность выхода двигателя из строя за время работы.

30 ₽

Задача 24119. На сборку деталей поступают детали от двух поставщиков, причем от второго в 2 раза меньше. Брак первого поставщика составляет 5%, второго 3%. Наугад берем две детали. Они обе годны. Какова вероятность что они обе от первого поставщика.

30 ₽

Задача 24120. В одном сосуде находятся 5 белых и 6 черных шаров. Во втором - 9 белых и 6 черных шаров. Бросают два кубика. Если сумма очков, выпавших на верхних гранях, меньше 10, берут шар из первого сосуда, если больше или равна 10 – из второго. Вынут черный шар. Какова вероятность того, что сумма очков была не меньше 10?

30 ₽

Задача 24121. В каждой из двух урн находятся 4 белых и 6 красных шаров. Из первой урны переложили наудачу один шар, а затем из второй урны вынули наугад один шар. Найти вероятность того, что вынутый шар окажется красным.

30 ₽

Задача 24122. На сборочное предприятие поступили однотипные комплектующие с трех заводов в количестве 25 с первого завода, 35 со второго и 40 с третьего. Процент качества на каждом заводе составляет 90%, 80% и 70% соответственно. Какова вероятность того, что: а) взятое наугад изделие окажется качественным? Б) если изделие качественное, то какова вероятность, что оно с третьего завода?

30 ₽

Задача 24123. При работе станка рентабельный режим наблюдался в 80% всех случаев работы, нерентабельный – в 20%. Вероятность выхода станка из строя в рентабельном режиме 0,1, в нерентабельном – 0,7.
3.1. Найти полную вероятность выхода станка из строя за время работы.
3.2. Станок вышел из строя, какова вероятность, что он работал в нерентабельном режиме.

30 ₽

Задача 24124. Среди вакансий Центра занятости населения 88,7% составляют рабочие специальности; 11,3% – вакансии для служащих. Вероятность обращения в Центр занятости соискателя рабочей специальности составляет 0,3, а вакансии для служащих – 0,6. Обратившийся в Центр занятости соискатель нашел работу. Какова вероятность того, что это соискатель рабочей специальности?

30 ₽

Задача 24125. На склад поступило 25 микросхем с первого завода, 50 со второго и 25 с третьего. Вероятность выхода из строя за год для микросхемы с первого завода равна 0,2, со второго – 0,3, с третьего – 0,1. Какова вероятность того, что наугад взятая микросхема проработает год?

30 ₽

Задача 24126. В первом ящике имеется 10 яблок и 5 груш, во втором – 5 яблок и 8 груш. Случайным образом из первого ящика во второй переложили один плод, а затем из второго достали два плода. Ими оказались два яблока. Какова вероятность того, что переложили грушу?

30 ₽

Задача 24127. В партии из 10 изделий с равными шансами содержится от 0 до 2 изделий со скрытыми дефектами (брак). Взятые наугад 3 изделия оказались годными. Какова вероятность того, что среди оставшихся непроверенных изделий содержится 0 изделий со скрытыми дефектами?

30 ₽

Задача 24128. Из трех баскетболистов наугад выбирают одного, и он бросает мяч в корзину. Вероятность попадания в корзину для первого игрока равна 0,7, для второго – 0,8, для третьего – 0,9. Найти вероятность того, что был выбран третий игрок, если известно, что мяч попал в корзину.

30 ₽

Задача 24129. Имеется 3 урны. В первой из них 5 белых и 6 черных шаров, во второй 4 белых и 3 черных шара, в третьей 5 белых и 5 черных шаров. Некто наугад выбирает одну из урн и вынимает из нее шар. Этот шар оказался белым. Найти вероятность того, что этот шар вынут из 2-ой урны.

30 ₽

Задача 24130. Деталь изготавливается на двух станках, производительность первого в три раза выше, чем у второго. Вероятность изготовления стандартной детали на первом станке равна 0,9, на втором – 0,8. Найти вероятность того, что наудачу взятая деталь будет стандартной.

30 ₽

Задача 24131. Покупатель может приобрести нужный ему товар в двух магазинах. Вероятность обращения в первый магазин 0,4, а во второй - 0,6. Вероятность того, что к приходу покупателя в магазине есть нужный ему товар, равна 0,5 для первого магазина и 0,3 - для второго магазина. Какова вероятность того, что покупатель приобретёт нужный ему товар?

30 ₽

Задача 24132. На заводе производительности трех цехов относятся как 1:3:4. Вероятность брака в продукции цехов 5%, 3% и 10% соответственно. Вся продукция поступает на склад. Найти вероятность того, что случайным образом взятое изделие со склада будет бракованным и, если оно бракованное, то произведено первым цехом.

30 ₽

Задача 24133. В двух одинаковых коробках лежат карандаши. В первой 12 красных и 8 синих, во второй 6 красных и 4 синих. Из случайно выбранной коробки наугад берется один карандаш. Найти вероятность того, что красный карандаш был взят из второй коробки.

30 ₽

Задача 24134. Изготовленные детали складывают в 3 одинаковых ящика, в первом оказалось a стандартных и b бракованных, во втором - c стандартных и d бракованных, в третьем - только стандартные. Взятая из наугад выбранного ящика деталь оказалось стандартной. Какова вероятность, что она из первого ящика?

30 ₽

Задача 24135. В фирму доставили две партии принтеров по 15 и 20 штук в каждой. Оказалось, что в первой партии два принтера без картриджей, а во второй – один. Один из принтеров первой партии при перевозке был переложен во вторую.
А) Найти вероятность того, что случайно взятый из второй партии принтер оказался без картриджа. Б) Какова вероятность того, что до этого в нее был переложен принтер с картриджем.

30 ₽

Задача 24136. В двух ящиках находятся детали. В первом ящике 10 деталей (из них 3 стандартных), во втором – 15 (из них 6 стандартных). Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что обе детали окажутся стандартными. Найти вероятность того, что наудачу извлеченная деталь из наудачу взятого ящика будет стандартная .

30 ₽

Задача 24137. Из 50 первокурсников института Экономики сдали вступительные экзамены по математика 20 – на отлично, 25 – на хорошо, остальные – на удовлетворительно. На первой сессии свои отличные оценки подтвердили 10%, хорошие – 60%, все троечники снова получили по 3 балла. Какова вероятность, что наугад взятый студент подтвердил свою оценку?

30 ₽

Задача 24138. В дисплейном классе имеется 10 персональных компьютеров первого типа и 15 второго типа. Вероятность того, что за время работы на компьютере первого типа не произойдет сбоя, равна 0,9, а на компьютере второго типа – 0,7. Найти вероятность того, что:
А) на случайно выбранном компьютере за время работы не произойдет сбоя,
Б) компьютер, во время работы на котором не произошло сбоя, первого типа.

30 ₽

Задача 24139. В оснащение парадной люстры входят 6 электроламп первого типа, 10 – второго и 24 – третьего. Гарантийный срок обычно выдерживают 80% электроламп первого типа и 90% второго и третьего типов. Найти вероятность того, что:
А) наугад взятая электролампа выдержит гарантийный срок,
Б) электролампа, выдержавшая гарантийный срок, первого типа.

30 ₽

< Предыдущая 1 ... 40 41 42 43 44 ... 60 Следующая > 

* Конечная стоимость зависит от комиссии выбранного вами варианта оплаты и будет указана перед оплатой.