< Предыдущая 1 ... 50 51 52 53 54 ... 60 Следующая >
Полная вероятность и формула Байеса
Решения задач с 24626 по 24681
Задача 24626. Вероятность появления частиц трех типов А, В и С составляет 0,3; 0,6 и 0,1 соответственно, причем счетчик улавливает частицы типа А с вероятностью 70%, частицы типа В – 60%, а частицы типа С – 90%. Счётчик зарегистрировал появление частицы. К какому типу вероятнее всего относится эта частица?
Задача 24627. В автосалоне 35% автомобилей отечественного производства, остальные импортного. Вероятность продажи импортного автомобиля составляет 0,3, вероятность продажи отечественного автомобиля – 0,8. Автомобиль был продан. Какова вероятность, что он отечественного производства?
Задача 24629. Из 11 стрелков 5 попадают в мишень с вероятностью 0,7; 6 – с вероятностью 0,6. Наудачу выбранный стрелок произвел выстрел, но в мишень не попал. К какой из групп вероятнее всего принадлежит этот стрелок?
Задача 24630. В первой урне находятся 3 шара белого и 8 шаров черного цвета, во второй – 9 белого и 1 синего, в третьей – 11 белого и 2 красного цвета. Из первой и второй урны наудачу извлекают по одному шару и кладут в третью. После этого из третьей вынимают один шар. Найти вероятность того, что он окажется белым.
Задача 24631. В отдел технического контроля поступает партия, содержащая N=15 изделий, среди которых имеется M=6 бракованных. Контролер для контроля отбирает 3 изделия, при этом в бракованном изделии он обнаруживает брак с вероятностью P=0,85 . Партия бракуется, если среди трех отобранных для проверки изделий обнаружено хотя бы одно бракованное изделие. Найти вероятность того, что данная партия изделий будут забракована.
Задача 24632. Упаковка сосисок производится двумя автоматами с одинаковой производительностью. Доля брака, допускаемого первым автоматом, равна 5%, а вторым-7%
а) Найти вероятность того, что наудачу взятая упаковка окажется бракованной.
б) Наудачу взятая упаковка оказалась бракованной. С какой вероятностью эта упаковка произведена первым автоматом?
Задача 24633. В двух урнах имеются черные и белые шары; в первой урне − 3 белых, 4 черных; во второй − 5 белых, 3 черных. Из первой урны наудачу берут два шара, из второй − один шар. Эти три шара помещают в третью урну. Из третьей урны вынимают один шар. Найти вероятность того, что он белый.
Задача 24634. Р(выигрыша W лошади на скачках)=0,3, если сухо, и 0,5, если сыро R. Р(сухо)=0,4. Р(выигрыша)? При условии проигрыша L, какова Р(сухо)?
Задача 24636. В магазин поступили телевизоры от трех дистрибьютеров в отношении 1:3:6. Телевизоры, поступающие от 1-го дистрибьютора, требуют наладки в 3% случаев, от 2-го и 3-го – соответственно 2% и 1%. Найти вероятность того, что поступивший в магазин телевизор требует наладки.
Задача 24637. По улицам города N ездят автомобили отечественного и зарубежного производства, причем отечественных автомобилей - 60% от общего числа. Известно, что 20% отечественных автомобилей не отвечают экологическим требованиям, зарубежных – 30%. Какова вероятность того, что случайный автомобиль, остановленный на улице, не отвечает экологическим требованиям.
Задача 24639. В тире имеются 5 различных по точности боя винтовок. Вероятности попадания в мишень для данного стрелка соответственно равны 0,5; 0,55; 0,7; 0,75 и 0,4. Чему равна вероятность попадания в мишень, если стрелок делает один выстрел из случайно выбранной винтовки?
Задача 24640. Двигатель работает в трёх режимах: нормальном, форсированном и на холостом ходу. В режиме холостого хода вероятность его выхода из строя равна 0,05, при нормальном режиме работы – 0,1, а при форсированном – 0,7. 70% времени двигатель работает в нормальном режиме, а 20% – в форсированном. Какова вероятность выхода из строя двигателя во время работы?
Задача 24641. На склад поступило 2 партии изделий: первая – 4000 штук, вторая – 6000 штук. Средний процент нестандартных изделий в первой партии 20%, во второй – 10%. Наудачу взятое со склада изделие оказалось нестандартным. Найти вероятность того, что оно: а) из первой партии, б) из второй партии.
Задача 24642. В студенческой группе 3 человека имеют высокий уровень подготовки, 19 человек – средний и 3 – низкий. Вероятности успешной сдачи экзамена для данных студентов соответственно равны: 0,95; 0,7 и 0,4. Известно, что некоторый студент сдал экзамен. Какова вероятность того, что: а) он был подготовлен очень хорошо; б) был подготовлен средне; в) был подготовлен плохо. Проведите вычисления и проанализируйте результаты переоценки гипотез.
Задача 24643. Имеются три урны с шарами. В первой урне 4 белых и 5 черных, во второй – 5 белых и 4 черных, в третьей – 6 белых. Некто выбирает наугад одну из урн и вынимает из нее шар. Найти вероятность того, что: а) этот шар окажется белым, б) белый шар вынут из второй урны.
Задача 24644. В первой урне 5 черных, 3 белых шара. Во второй 2 белых, 1 черный шар. Из случайной урны берут два шара. Найти вероятность, что они разного цвета.
Задача 24645. В первой урне 5 черных, 3 белых шара. Во второй 2 белых, 1 черный шар. Из случайной урны берут два шара. Найти вероятность, что они одного цвета.
Задача 24646. В первой урне 5 черных и 3 белых шара. Во второй урне 2 черных, 2 белых шара. Из первой урны во вторую кладут один шар. Из второй берут два шара. Найти вероятность того, что они разного цвета.
Задача 24647. В первой урне 4 черных и 6 белых шаров. Во второй урне 3 черных и 3 белых шара. Из первой урны во вторую кладут два шара. Из второй урны берут один шар. Найти вероятность, что шар окажется белым.
Задача 24648. В урне 4 белых и 6 черных шаров. Шары достают по одному. Найти вероятность того, что третий шар окажется белым.
Задача 24649. На складе 200 деталей первого завода, 300 второго, 500 третьего. Вероятность того, что деталь бракованная для каждого из заводов соответственно равна: 0.05; 0.1; 0.2. Найти вероятность того, что случайно взятая деталь окажется бракованной.
Задача 24651.
Радиолампа может принадлежать к одной из трех партий с вероятностью ${\mathit{p}}_{1}={\mathit{p}}_{2}=0.25, {\mathit{p}}_{3}=0.5$. Вероятности того, что лампа из соответствующей партии проработает нужное время, равны соответственно 0,8, 0,7 и 0,9. Определить вероятность того, что случайно выбранная лампа проработает нужное время.
Задача 24652.
Перед экзаменом студентам нужно было подготовить 30 вопросов. Из 25 студентов 10 подготовили все вопросы, 8 студентов -25 вопросов, 5 студентов -20 вопросов и 2 студента - 15 вопросов. Вызванный студент ответил на поставленный вопрос. Найти вероятность того, что этот студент подготовил только половину вопросов.
Задача 24653. 15 раз проводим следующий опыт: подбрасываем правильную монету и, если выпадает герб, бросаем кость, у которой вероятность выпадения 6 очков равна 1/3; если выпадает решка, бросаем правильную кость. Случайная величина $\mathit{X}$ - число выпадений 6.
Найдите вероятность $\mathit{P}\left(0\right)$ того, что $\mathit{X}=0$.
Введите числа в виде десятичной дроби с разделителем точка с точностью до трех десятичных знаков, например, 0.357.
Задача 24654.
В первой клетке содержатся 3 попугая, из которых 1 – говорящий, во второй клетке – 4 попугая, все говорящие. Из первой клетки взяли наугад одного попугая и пересадили во вторую. Затем из второй клетки случайным образом взяли одного попугая и продали его покупателю, желающему приобрести собеседника. Какова вероятность, что покупателю достанется говорящий попугай?
Задача 24655.
Два автомата производят одинаковые детали, которые поступают на общий конвейер, причем 1-й автомат производит 60% всей продукции. Известно, что процент бракованных изделий, выпускаемых первым автоматом, равен 25%, а для второго автомата процент брака составляет 30%. Наудачу взятая с конвейера деталь оказалась бракованной. Найти вероятность того, что эта деталь произведена первым автоматом.
Задача 24656.
Выход прибора из строя происходит по одной из причин: отказ электрического контакта, механическая поломка, загрязнение. Отказ контакта происходит с вероятностью 0,9; механическая поломка — с вероятностью 0,8; загрязнение — с вероятностью 0,5, Прибор вышел из строя. Определить вероятность того, что прибору необходима чистка.
Задача 24657. В первой урне 4 черных, 3 белых шара. Во второй 3 белых, 1 черный шар. Из случайной урны берут два шара. Найти вероятность, что они разного цвета.
Задача 24658.
В стройотряде 70% первокурсников и 30% студентов второго курса. Среди первокурсников 10% девушек, а среди студентов второго курса - 5% девушек. Случайным образом выбирают дежурного по кухне. Найти вероятность того, что будет выбрана девушка.
Задача 24659.
В торговую фирму поступили компьютеры от трех поставщиков в отношении 1:4:5. Практика показала, что компьютеры, поступающие от первого, второго и третьего поставщиков, не потребуют ремонта в течение гарантийного срока соответственно в 98%, 88% и 92% случаев. Найти вероятность того, что поступивший в торговую фирму компьютер не потребует ремонта в течение гарантийного срока.
Задача 24660.
Строительная бригада получает железобетонные перекрытия от трех ДСК: от первой ДСК - 30%, от второй ДСК - 55%, от третьей ДСК -15%. Известно, что брак продукции первой ДСК составляет 5%, второй ДСК - 6%, третьей ДСК - 10%. Полученные перекрытия хранятся на общем складе. Какова вероятность того, что наугад выбранное перекрытие окажется браком?
Задача 24662.
Имеется пять урн следующего состава: две урны по 2 белых и 3 черных шара; две урны по 1 белому и 4 черных шара; в одной урне 4 белых и 1 черный шар. Из одной наудачу выбранной урны взят шар. Чему равна вероятность того, что вынут белый?
Задача 24663.
Два автомата производят одинаковые детали, которые поступают на общий конвейер. Производительность первого автомата вдвое больше, чем у второго автомата. Первый производит в среднем 60% деталей отличного качества, а второй - 84% деталей отличного качества. Найти вероятность того, что наудачу взятая деталь с конвейера окажется отличного качества.
Задача 24665. В отдел контроля качества поступают однотипные изделия с трех цехов. Причем из первого цеха поступает 40 процентов всех изделий, а из остальных поровну. Среди изделий каждого из цехов 85%, 90% и 90% первосортных. Наугад взятое изделие оказалось бракованным. Какова вероятность, что оно изготовлено в 1 цехе?
Задача 24666. Имеются две урны с шарами двух цветов - белые и черные. В первой урне 7 белых и 6 черных, а во второй урне 4 белых и 8 черных. Из первой урны случайным образом берется один шар, а из второй два шара. Далее из вытащенных шаров случайным образом берется один шар. Какова вероятность, что он белый?
Задача 24667. Прибор может работать в трех режимах: нормальном (60% всего времени), форсированном (8% всего времени) и недогруженном. Надежность прибора (вероятность безотказной работы за время $\mathit{t}$) в первом режиме 0.7, во втором режиме 0.5 и в третьем 0.8. Найти надежность прибора в целом.
Задача 24668. Вотдел контроля качества поступают однотипные изделия с трех цехов. Причем из первого цеха поступает 76 процентов всех изделий, а со второго в два раза больше, чем из третьего. Среди изделий каждого из цехов 92%, 99% и 84% первосортных. Наугад взятое изделие оказалось бракованным. Какова вероятность, что оно изготовлено в 1 цехе?
Задача 24669. В урне находится 4 белых и 8 чёрных шаров. Из урны извлекается два шара и откладываются в сторону, после чего извлекается третий шар. Определить вероятность того, что этот шар черный?
Задача 24670. Площадь наводной части борта корабля равна 500 м^2. Вероятность гибели корабля при попадании ракеты в один из трёх отсеков, площади которых составляют 50 м^2, 75м^2 и 100 м^2, соответственно, равна 0,4, 0,3, 0,2. Известно, что припервом попадании корабль не погиб. Найдите вероятность гибели корабля при втором попадании, если запуски ракет производятся независимо.
Задача 24671. У Финтифлюшкина 3 врага - Кондрат, Семен, и Пафнутий. Кондрат попадает в цель в темноте с вероятностью 0.3, Семен - 0.2, Пафнутий 0.4. Однажды в темном углу по Финтифлюшкину стреляли трижды, но попали лишь один раз. Найти вероятность того, что стрелял Семен.
Задача 24672. Экзамен сдавали студенты трех групп, причем в i-й группе учатся mi% студентов (i=1,2,3). Вероятность сдать экзамен на положительную оценку для студента i-й группы ni%. Наудачу выбранный студент экзамен не сдал. Определить вероятность того, что этот студент из i-й группы?
m1 = 60, m2 = 20, m3 = 20, n1 = 70, n2 = 80, n3 = 90, i = 1.
Задача 24673. В первой урне 8 белых и 7 черных шара, во второй – 6 белых и 9 черных. Из второй урны случайным образом перекладывают в первую два шара, после чего из первойурны берут один шар. Какова вероятность того, что этот шар белый?
Задача 24674. В двух ящиках находятся шары двух цветов: в первом – 4 красных и 6 голубых, во втором – 6 красных и 8 голубых. Наудачу из каждого ящика вытащили по одному шару. Затем из этих двух наугад взяли один. Какова вероятность того, что он голубой?
Задача 24675. В эпоху мезолита (среднего каменного века) для того, чтобы убить зайца, было достаточно двух попаданий из лука, при одном попадании вероятность поражения зайца равнялась 0,6. Какова вероятность того, что два охотника не остались бы без рагу из зайца, если бы они стреляли по цели из луков одновременно с вероятностью попадания 0,8 и 0,5 соответственно?
Задача 24676. В первой урне 2 белых и 5 черных шаров, во второй – 5 белых и 2 черных. Из первой урны во вторую переложили один шар, за тем из второй урны извлекли один шар.
А) определить вероятность того, что взятый из второй урны шар – белый;
Б) взятый из второй урны шар оказался белым. Найти вероятность того, что до этого из первой урны во вторую был переложен белый шар.
Задача 24677. В урне 4 белых и 6 черных шаров. Из урны вынимают один шар и откладывают в сторону. После этого из урны берут еще один шар. Найти вероятность того, что первый шар, отложенный в сторону – тоже белый.
Задача 24678. Группа студентов состоит из 2 отличников, 7 - хорошо успевающих и 6 – занимающихся слабо. Отличники на предстоящем экзамене могут получить только отличные оценки. Хорошо успевающие студенты могут получить с равной вероятностью хорошие и отличные оценки. Слабо занимающиеся могут получить с равной вероятностью хорошие, удовлетворительные и неудовлетворительные оценки. Для сдачи экзамена наугад вызывается один студент. Найти вероятность того, что он получит хорошую или отличную оценку.
Задача 24679. Электролампы изготавливаются на трех заводах. Первый производит 45% общего количества электроламп, поступающих в магазин, второй – 40% и третий – 15%. Продукция первого завода содержит 90% стандартных ламп, второго – 80%, а третьего – 95%. Найти вероятность того, что купленная в магазине лампа окажется стандартной.
Задача 24680. Файл заражен одним из 2 семейств вирусов. На момент анализа с вероятностью 0.6 предполагается, что это семейство А. В 60% случаев заражения вирусом семейства А, анализируя файл, можно обнаружить некоторую сигнатуру, в 50% случаев заражения вирусом семейства В можно обнаружить её же.
В результате анализа данная сигнатура была обнаружена. Как изменилось мнение о заражении вирусом семейства А?
Задача 24681. По оценке кредитной компании 10% ее потенциальных клиентов относятся к группе лиц с повышенным риском невозврата кредита. Лицам, входящим в эту группу, удается получить кредит в 20% случаев; остальные клиенты кредитной компании получают кредит в 70% случаев.
А) Найти вероятность того, что клиент, обратившийся в компанию, получит кредит.
Б) Какова вероятность того, что клиент, получивший кредит, относится к группе лиц с повышенным риском невозврата кредита?
< Предыдущая 1 ... 50 51 52 53 54 ... 60 Следующая >
* Конечная стоимость зависит от комиссии выбранного вами варианта оплаты и будет указана перед оплатой.