Меню
инструкции по поиску решенных задач по теории вероятностей


  Искать только в данном разделе

< Предыдущая 1 2 3 4 5 6 ... 13 Следующая > 


Геометрическая вероятность

Решения задач с 9153 по 9203

Задача 9153. На отрезках [0;2] и [0;3] случайно выбрали числа p и q соответственно. Какова вероятность, что уравнение x2+(p+q)x+1=0 имеет действительные корни.

30 ₽
Добавить в корзину

Задача 9154. Случайная точка брошена в правильный шестиугольник. Найти вероятность того, что она будет ближе к стороне шестиугольника, чем к его диагонали.

30 ₽
Добавить в корзину

Задача 9155. На отрезке [0;2] наудачу выбраны два числа x и y. Найдите вероятность того, что эти числа удовлетворяют неравенству x2≤4y≤4x.

30 ₽
Добавить в корзину

Задача 9156. Два человека договорились встретиться в определенном месте от 17 до 18 часов. При этом каждый обязался после прихода на место встречи ожидать другого 30 минут. Какова вероятность встречи этих людей, если каждый из них равновозможно придет в течение указанного интервала времени?

30 ₽
Добавить в корзину

Задача 9157. На отрезке KL, длина которого равна единице, наудачу поставлены две точки A и B. Вероятность выбора любой из точек на любом промежутке, содержащемся внутри отрезка KL, зависит только от длины промежутка и пропорциональна ей и не зависит от того, где внутри KL этот промежуток расположен. Найдите вероятность события «точка A ближе к точке L, чем к точке B».

30 ₽
Добавить в корзину

Задача 9158. В течение 10 единиц времени в устройство должны поступить два сообщения: одно длительностью 2 единицы, другое – 6 единиц. Устройство не может принимать второе сообщение, если не закончилось первое. Какова вероятность того, что будет принято только одно сообщение?

30 ₽
Добавить в корзину

Задача 9159. В квадрат с вершинами (0,0), (0,1), (1,1) и (1,0) наудачу ставится точка. Какова вероятность события A={(x,y): max(x,y)<a, a>0}?

30 ₽
Добавить в корзину

Задача 9160. В область D наугад брошена точка, причем все положения точки в этой области равновозможны. Найдите вероятность того, что координаты точки X и Y будут удовлетворять неравенству 4XY≤-5X2+Y2. Область D - единичный квадрат [0;1]*[0;1].

30 ₽
Добавить в корзину

Задача 9161. Значения a и b равновозможны в квадрате |a|≤1, |b|≤1. Найти вероятность того, что корни квадратного трехчлена x2+2ax+b действительны.

30 ₽
Добавить в корзину

Задача 9162. Из интервала (0, 1) взяты 2 числа. Какова вероятность того, что сумма их квадратов больше 1.

30 ₽
Добавить в корзину

Задача 9163. Два лица договорились встретиться в определенном месте между 12 и 13, причем пришедший первым ждет другого в течение 15 минут, после чего уходит. Найти вероятность их встречи, если приход каждого в течение указанного часа может произойти в любое время и моменты прихода независимы.

30 ₽
Добавить в корзину

Задача 9164. Окружность радиуса R вписана в квадрат. Найти вероятность того, что точка, наудачу брошенная в квадрат, окажется внутри вписанного круга, если вероятность попадания точки в круг пропорциональна площади круга?

30 ₽
Добавить в корзину

Задача 9165. Наудачу взяты два положительных числа x и y,каждое из которых не превышает двух. Найти вероятность того, что сумма x+y будет не больше трех, а частное х/у не больше двух.

30 ₽
Добавить в корзину

Задача 9166. Значения a и b равновозможны в квадрате |a|≤1, |b|≤1. Найти вероятность того, что корни квадратного трехчлена x2+2ax+b положительны.

30 ₽
Добавить в корзину

Задача 9167. Точка с координатой f наудачу выбрана на отрезке [0, 1], и независимо от неё точка с координатой h наудачу выбрана на отрезке [0, 4]. Найти вероятность события {3f -2h > 1}.

30 ₽
Добавить в корзину

Задача 9168. В квадрат с вершинами (0,0), (0,1), (1,1) и (1,0) наудачу ставится точка. Какова вероятность события A={(x,y): xy<a, a>0}.

30 ₽
Добавить в корзину

Задача 9169. На отрезок [0;2] наудачу и независимо друг от друга брошены две точки с координатами ξ и η.
А) Проверить, являются ли события {ξ≤1} и {min(ξ, η)>1/2} независимыми.
Б) Проверить, являются ли события {ξ<1}, {ξ>1} и {ξ=1} независимыми в совокупности.

30 ₽
Добавить в корзину

Задача 9170. На отрезок [0;7] случайно бросаются две точки. Найти вероятность того, что расстояние между ними не превысит 4. Сделать чертеж.

30 ₽
Добавить в корзину

Задача 9171. Внутри квадрата с вершинами (0,0), (1,0), (0,1), (1,1) наугад выбирается точка M(X,Y). Какова вероятность, что ее координаты удовлетворяют неравенству X2+Y2<1?

30 ₽
Добавить в корзину

Задача 9172. В квадрат с вершинами (0,0), (0,1), (1,1) и (1,0) наудачу ставится точка. Какова вероятность события A={(x,y): min(x,y)<a, 0≤a≤1}?

30 ₽
Добавить в корзину

Задача 9173. Какова вероятность того, что сумму двух наудачу взятых отрезков, длина каждого из которых не превосходит 2, будет больше 2?

30 ₽
Добавить в корзину

Задача 9174. В круг вписан квадрат. Какова вероятность того, что из десяти точек, брошенных наудачу в круг, 4 попадут в квадрат, 3 — в один сегмент и по одной — в оставшиеся три сегмента?

30 ₽
Добавить в корзину

Задача 9175. Случайная точка ξ брошена наудачу в равнобедренный прямоугольный треугольник АВС. Угол ВАС - прямой, длины катетов равны а. Предполагается, что вероятность попадания точки в любую область, лежащую целиком внутри треугольника, пропорциональна площади области и не зависит ни от формы области, ни от того, где внутри треугольника она расположена. Найдите вероятность того, что расстояние от точки ξ до вершины прямого угла больше половины длины медианы АМ, проведённой из вершины А к гипотенузе ВС.

30 ₽
Добавить в корзину

Задача 9176. Шарик (рассматриваем, как точку) бросают в круг X2+Y2≤1.Какова вероятность того, что расстояние от точки до центра круга не превысит 0.5.

30 ₽
Добавить в корзину

Задача 9178. В круг диаметром 14 см. брошена точка. Найти вероятность того, что она попадет в квадрат, расположенный внутри круга, если сторона квадрата равна 2см.

30 ₽
Добавить в корзину

Задача 9179. Решите задачу на вычисление геометрической вероятности:
Равносторонний треугольник со стороной a = 16 см случайным образом рассечен прямой, проходящей через одну из его вершин. Найти вероятность того, что площадь одной полученной части не более, чем в два раза превосходит площадь другой.

30 ₽
Добавить в корзину

Задача 9180. В круг радиуса вписан квадрат. Какова вероятность того, что из 5 независимо и случайно поставленных внутри круга точек, две точки окажутся внутри квадрата?

30 ₽
Добавить в корзину

Задача 9181. В прямоугольник с вершинами K(-1;0), L(-1;8), M(2;8), N(2;0) брошена точка. Какова вероятность того, что ее координаты (x,y) будут удовлетворять неравенствам x^2+1<=y<=x+3?

30 ₽
Добавить в корзину

Задача 9182. В любой момент времени в течение суток к причалу могут подойти независимо друг от друга два парохода. Время стоянки первого парохода 1 час, второго – 2 часа. Найти вероятность того, что одному из пароходов придется ожидать освобождения причала.

30 ₽
Добавить в корзину

Задача 9183. Через точку на диаметре окружности радиуса R проводят перпендикулярные диаметру хорды. Определить вероятность того, что длина случайно взятой хорды не более sqrt{3}/2 R.

30 ₽
Добавить в корзину

Задача 9184. В прямоугольный треугольник с катетами 5 и 12 вписан в круг. Какова вероятность того, что из брошенных наудачу в треугольник трех точек ровно две попадут в круг?

30 ₽
Добавить в корзину

Задача 9185. На отрезке [-2,2] случайным образом выбираются два числа. Найти вероятность того, что наименьшее из них принадлежит отрезку [-1,1].

30 ₽
Добавить в корзину

Задача 9186. Наудачу взяты два неотрицательных действительных числа, одно из которых не более 2, а второе не более 4. Найти вероятность того, что сумма этих чисел не менее 3.

30 ₽
Добавить в корзину

Задача 9187. На отрезке [АВ], |АВ| = L наудачу поставлены две точки N и М. Найти вероятность того, что точка N будет ближе к точке М, чем к точке А.

30 ₽
Добавить в корзину

Задача 9188. На плоскости область G ограничена окружностью x2+y2=25, а область g ограничена этой же окружностью и параболой 16x=3y2. В область G наудачу брошена точка. Найти вероятность того, что она попадет в область g.

30 ₽
Добавить в корзину

Задача 9189. К автобусной остановке в течение каждых 10 минут подходит один автобус 1-го маршрута и один автобус 2-го маршрута. Стоянка 1-го автобуса – 4 минуты, 2-го – 3 минут. Найти вероятность встречи автобусов на остановке.

30 ₽
Добавить в корзину

Задача 9190. Дано уравнение ax=b. Если a выбирается наудачу из (0;8), а b – на интервале (0;10), то какова вероятность, что корень данного уравнения будет больше 1?

30 ₽
Добавить в корзину

Задача 9191. Внутрь круга радиуса 6 см брошена наугад точка. Найти вероятность того, что точка не попадет внутрь нарисованного в круге квадрата со стороной 4 см.

30 ₽
Добавить в корзину

Задача 9192. Случайная точка Х равномерно распределена внутри правильного треугольника с вершинами (а,0), (-а,0), (0, a sqrt{3}). Найти вероятность того, что квадрат с центром Х и сторонами b, параллельными осям координат, целиком содержится в этом треугольнике.

60 ₽
Добавить в корзину

Задача 9193. Два человека прилетают в один аэропорт. Время прилета обоих равновозможно в течение часа. Какова вероятность встречи этих людей, если каждый из них ожидает выдачи багажа 20 минут (в одном и том же месте)?

30 ₽
Добавить в корзину

Задача 9194. Пол в комнате сделан из досок шириной 13 см. На пол падает кружок диаметром 6 см. Найти вероятность того, что кружок не пересечет границу между досками.

30 ₽
Добавить в корзину

Задача 9195. Коэффициенты p и q квадратного уравнения x2+px+4q=0 выбираются наудачу в промежутке (-16; 16). Чему равна вероятность того, что корни будут комплексные?

30 ₽
Добавить в корзину

Задача 9196. В шар наудачу брошена точка. Найдите вероятность того, что точка попадет внутрь куба, вписанного в шар.

30 ₽
Добавить в корзину

Задача 9197. Самолет, имеющий радиолокационную станцию с дальностью действия d, осуществляет поиск со скоростью в достаточно большом районе площадью S, в любой точке которого может находиться в течение времени t подводная лодка. Найти вероятность p обнаружения подводной лодки, если время t невелико и лодка обнаруживается при попадании в зону действия радиолокатора.

30 ₽
Добавить в корзину

Задача 9198. Иван и Петр договорились о встрече в определенном месте между 11 и 12 часами. Каждый приходит в случайный момент указанного промежутка и ждет другого до истечения часа, но не более 15 минут, после чего уходит. Найти вероятность того, что встреча состоялась, когда до истечения часа оставалось меньше 5 минут.

30 ₽
Добавить в корзину

Задача 9199. Имеется магнитофонная лента длины 200 м, на обеих сторонах которой записаны сообщения: на одной стороне сообщение длины 30 м, на второй – длины 50 м. Местоположение записей неизвестно. В связи с повреждением ленты пришлось удалить ее участок длины 10 м, начинающийся на расстоянии 80 м от начала ленты. Найти вероятность того, что повреждена только первая запись.

30 ₽
Добавить в корзину

Задача 9200. Стержень длины l ломается в наудачу выбранной точке на две части (положение точки излома равновозможно в любой точке стержня). Какова вероятность P(m) того, что длина большей части окажется меньше заданного числа m? Постройте график функции P(m).

60 ₽
Добавить в корзину

Задача 9201. Середины сторон квадрата последовательно соединены прямыми линиями, поделившими квадрат на пять областей. Внутрь квадрата наудачу брошены три точки. Найти вероятность того, что две точки попадут внутрь центральной области, а оставшаяся – в область по углу квадрата.

30 ₽
Добавить в корзину

Задача 9202. Двое – А и В – договорились о встрече в определенном месте между 14 и 15 часами. Каждый приходит в случайный момент указанного промежутка времени и ждет появления другого до истечения часа, но не более, чем 15 минут, после чего уходит. Найдите вероятность того, что встреча состоялась после 14:30.

30 ₽
Добавить в корзину

Задача 9203. В квадрат наудачу брошена точка w. Предполагается, что вероятность попадания точки в любую область, лежащую целиком внутри квадрата, пропорциональна площади области и не зависит ни от формы области, ни от того, где внутри квадрата она расположена. Найдите вероятность того, что точка w удалена от ближайшей к ней вершины на расстояние меньшее половины длины стороны квадрата.

30 ₽
Добавить в корзину

< Предыдущая 1 2 3 4 5 6 ... 13 Следующая > 

* Конечная стоимость зависит от комиссии выбранного вами варианта оплаты и будет указана перед оплатой.