Задача 23329. Два баскетболиста по очереди бросают мяч в корзину до первого попадания. Выигрывает тот, кто первый забросит мяч. События: ${\mathit{A}}_{\mathit{k}}$ - первый попадает при -м броске, ${\mathit{B}}_{\mathit{j}}$ - второй попадает при $\mathit{j}$-м броске. Выразить через ${\mathit{A}}_{\mathit{k}}$ и ${\mathit{B}}_{\mathit{j}}$ событие $\mathit{A}$ - выиграет первый.
30 ₽
Подробнее о покупке решения задачи
- Стоимость решения: всего 30 ₽ (решение с нуля обычно от 50-100 ₽)
- Скорость: файл придет на почту сразу после оплаты
- Способы оплаты: СМС, банковская карта, Яндекс.Деньги
- Файл: в формате pdf (корректно открывается c любого устройства, в том числе с телефона)
- Решение: подробное, набрано в Word, с использованием редактора формул, снабжено пояснениями (см. примеры решений)
- Срок: решение доступно к скачиванию на сайте 24 часа после оплаты
- Поддержка: если что-то пошло не так, всегда готовы помочь
Нужны еще задачи? Найди прямо сейчас: